Abstract

Mitf has been reported to play a crucial role in regulating the differentiation of pigment cells in homeothermal animals, i.e. the melanocytes and the retinal pigment epithelium (RPE). However, less is known about the functions of Mitf in the developing RPE. To elucidate such functions, we introduced wild-type and dominant-negative Mitf expression vectors into chick optic vesicles by electroporation. Over-expression of wild-type Mitf altered neural retina cells to become RPE-like and repressed the expression of neural retina markers in vivo. In contrast, dominant-negative Mitf inhibited pigmentation in the RPE. The percentage of BrdU-positive cells decreased during normal RPE development, which was followed by Mitf protein expression. The percentage of BrdU-positive cells decreased in the wild-type Mitf-transfected neural retina, but increased in the dominant-negative Mitf-transfected RPE. p27kip1, one of the cyclin-dependent kinase inhibitors, begins to be expressed in the proximal region of the RPE at stage 16. Transfection of wild-type Mitf induced expression of p27kip1, while transfection of dominant-negative Mitf inhibited p27kip1 expression. We found that Mitf was associated with the endogenous p27kip1 5′ flanking region. These results demonstrate for the first time “in vivo” that Mitf uniquely regulates both differentiation and cell proliferation in the developing RPE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.