Abstract

Reliability analysis is an important tool for assisting the design phase of a power electronic converter to fulfill its life-cycle specifications. Existing converter-level reliability analysis methods have two major limitations: 1) being based on constant failure rate models; and 2) lack of consideration of long-term operation conditions (i.e., mission profile). Although various studies have been presented on power electronic component-level lifetime prediction based on wear-out failure mechanisms and mission profile, it is still a challenge to apply the same method to the reliability analysis of converters with multiple components. Component lifetime prediction based on associated models provides only a B <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">X</sub> lifetime information (i.e., the time when X% items fail), but the time-dependent reliability curve is still not available. In this paper, a converter-level reliability analysis approach is proposed based on time-dependent failure rate models and long-term mission profiles. Two different methods to obtain the component-level time-to-failure are illustrated by a case study of dc/dc converters for a 5 kW fuel cell-based backup power system. The reliability analysis of the converters with and without redundancy is also performed to assist the decision making in the design phase of the fuel cell power conditioning stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.