Abstract

Probabilistic reliability assessment of power systems is an ongoing field of research, particularly in the development of tools to model the probability of exogenous threats and their potential consequences. This paper describes the application of a weather-dependent failure rate model to a region of the Icelandic transmission system, using 10 years of weather data and overhead line fault records. The studied failure rate model is compared with a constant failure rate model, in terms of variability and how well the models perform in a blind test over a 2 year period in reflecting the occurrence of outages. The weather-dependent and constant failure rate models are used as input to a state-of-the-art risk assessment tool to determine the sensitivity of such software to weather-dependent threats. The results show the importance of weather-dependent contingency probabilities in risk estimation, and in quantitative assessment of maintenance activities. The results also demonstrate that inclusion of weather dependence in power system reliability assessments affects the overall distribution of risk as a positively skewed distribution, with high-risk periods occurring at low frequency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.