Abstract

We propose MiShape, a millimeter-wave (mmWave) wireless signal based imaging system that generates high-resolution human silhouettes and predicts 3D locations of body joints. The system can capture human motions in real-time under low light and low-visibility conditions. Unlike existing vision-based motion capture systems, MiShape is privacy non-invasive and can generalize to a wide range of motion tracking applications at-home. To overcome the challenges with low-resolution, specularity, and aliasing in images from Commercial-Off-The-Shelf (COTS) mmWave systems, MiShape designs deep learning models based on conditional Generative Adversarial Networks and incorporates the rules of human biomechanics. We have customized MiShape for gait monitoring, but the model is well adaptive to any tracking applications with limited fine-tuning samples. We experimentally evaluate MiShape with real data collected from a COTS mmWave system for 10 volunteers, with diverse ages, gender, height, and somatotype, performing different poses. Our experimental results demonstrate that MiShape delivers high-resolution silhouettes and accurate body poses on par with an existing vision-based system, and unlocks the potential of mmWave systems, such as 5G home wireless routers, for privacy-noninvasive healthcare applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call