Abstract

The role of the oxidative pentose phosphate pathway (oxPPP) in Synechocystis sp. PCC 6803 under mixotrophic conditions was investigated by 13C metabolic flux analysis. Cells were cultured under low (10μmolm-2s-1) and high light intensities (100μmolm-2s-1) in the presence of glucose. The flux of CO2 fixation by ribulose bisphosphate carboxylase/oxygenase under the high light condition was approximately 3-fold higher than that under the low light condition. Although no flux of the oxPPP was observed under the high light condition, flux of 0.08-0.19mmolgDCW-1h-1 in the oxPPP was observed under the low light condition. The balance between the consumption and production of NADPH suggested that approximately 10% of the total NADPH production was generated by the oxPPP under the low light condition. The growth phenotype of a mutant with deleted zwf, which encodes glucose-6-phosphate dehydrogenase in the oxPPP, was compared to that of the parental strain under low and high light conditions. Growth of the Δzwf mutant nearly stopped during the late growth phase under the low light condition, whereas the growth rates of the two strains were identical under the high light condition. These results indicate that NADPH production in the oxPPP is essential for anabolism under low light conditions. The oxPPP appears to play an important role in producing NADPH from glucose and ATP to compensate for NADPH shortage under low light conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call