Abstract
Miscibility is critical in the prediction of stability against crystallization of amorphous solid dispersions (ASDs) in the solid state. However, currently available approaches for its determination are limited by both theoretical and practical considerations. Recently, a rheological approach guided by the polymer overlap concentration (c*) has been proposed for miscibility quantification of ASDs [J. Pharm. Sci., 112 (2023) 204−212] and shown to be useful in predicting both accelerated and long term physical stability in the absence of moisture. However, this approach can only be performed at high temperatures (slightly above the melting temperature, Tm, of drugs), and little is known about the difference in miscibility between high and low temperatures (e.g., below the glass transition temperature, Tg). Here we compare the miscibility of nifedipine (NIF)/polyvinylpyrrolidone (PVP) ASDs as determined by the rheological approach at 175°C (∼3°C above Tm of NIF) and solid state NMR (ssNMR) 1H T1 and T1ρ relaxation times at -20°C (∼66°C below Tg of NIF). Our results indicate agreement between the two methods. For low molecular weight (Mw) PVP, T1ρ measurements are more consistent with the rheological approach, while T1 measurements are closer for relatively high Mw PVP. Our findings support the use of the c* based rheological approach for inferring miscibility of deeply cooled ASDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.