Abstract

AbstractThe miscibility between an acrylic copolymer and a tackifier resin was investigated in terms of phase diagrams, glass transition temperatures (Tg's), and dynamic mechanical properties of blends. Shear creep resistance (holding power, tb) of the blends was measured as a function of both temperature and stress (σ0) in order to obtain the master curves. It was found that the shear creep resistance of the pressure‐sensitive adhesives (PSAs) was closely related to the miscibility between the components and viscoelastic properties of the blends. The master curve of the miscible blends shifts toward a longer time scale as the amount of tackifier resin in the blend is increased as a result of the modification of the bulk properties, and their behavior greatly depends on the glass transition temperature (Tg) and storage modulus (G′) of the blends. However, the master curve of immiscible blends where two phases exist in the system does not shift greatly toward a longer time scale, because Tg and the storage modulus of the blend do not change greatly. © 1995 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.