Abstract

The snow ablation optimizer (SAO) is a meta-heuristic technique used to seek the best solution for sophisticated problems. In response to the defects in the SAO algorithm, which has poor search efficiency and is prone to getting trapped in local optima, this article suggests a multi-strategy improved (MISAO) snow ablation optimizer. It is employed in the unmanned aerial vehicle (UAV) path planning issue. To begin with, the tent chaos and elite reverse learning initialization strategies are merged to extend the diversity of the population; secondly, a greedy selection method is deployed to retain superior alternative solutions for the upcoming iteration; then, the Harris hawk (HHO) strategy is introduced to enhance the exploitation capability, which prevents trapping in partial ideals; finally, the red-tailed hawk (RTH) is adopted to perform the global exploration, which, enhances global optimization capability. To comprehensively evaluate MISAO’s optimization capability, a battery of digital optimization investigations is executed using 23 test functions, and the results of the comparative analysis show that the suggested algorithm has high solving accuracy and convergence velocity. Finally, the effectiveness and feasibility of the optimization path of the MISAO algorithm are demonstrated in the UAV path planning project.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.