Abstract

BackgroundMicroRNAs (miRNAs) are small non-coding RNA sequences with regulatory functions to post-transcriptional level for several biological processes, such as cell disease progression and metastasis. MiRNAs interact with target messenger RNA (mRNA) genes by base pairing. Experimental identification of miRNA target is one of the major challenges in cancer biology because miRNAs can act as tumour suppressors or oncogenes by targeting different type of targets. The use of machine learning methods for the prediction of the target genes is considered a valid support to investigate miRNA functions and to guide related wet-lab experiments. In this paper we propose the miRNA Target Interaction Predictor (miRNATIP) algorithm, a Self-Organizing Map (SOM) based method for the miRNA target prediction. SOM is trained with the seed region of the miRNA sequences and then the mRNA sequences are projected into the SOM lattice in order to find putative interactions with miRNAs. These interactions will be filtered considering the remaining part of the miRNA sequences and estimating the free-energy necessary for duplex stability.ResultsWe tested the proposed method by predicting the miRNA target interactions of both the Homo sapiens and the Caenorhbditis elegans species; then, taking into account validated target (positive) and non-target (negative) interactions, we compared our results with other target predictors, namely miRanda, PITA, PicTar, mirSOM, TargetScan and DIANA-microT, in terms of the most used statistical measures. We demonstrate that our method produces the greatest number of predictions with respect to the other ones, exhibiting good results for both species, reaching the for example the highest percentage of sensitivity of 31 and 30.5 %, respectively for Homo sapiens and for C. elegans. All the predicted interaction are freely available at the following url: http://tblab.pa.icar.cnr.it/public/miRNATIP/.ConclusionsResults state miRNATIP outperforms or is comparable to the other six state-of-the-art methods, in terms of validated target and non-target interactions, respectively.

Highlights

  • MicroRNAs are small non-coding RNA sequences with regulatory functions to post-transcriptional level for several biological processes, such as cell disease progression and metastasis

  • We present miRNATIP, a method for miRNA target predictions based on Self-Organizing Maps (SOM)

  • Methods it is described the representation adopted for the miRNA and messenger RNA (mRNA) sequences; it is presented the four-steps algorithm for the identification of miRNA targets and all the datasets used for our experiments are introduced

Read more

Summary

Results

We tested the proposed method by predicting the miRNA target interactions of both the Homo sapiens and the Caenorhbditis elegans species; taking into account validated target (positive) and non-target (negative) interactions, we compared our results with other target predictors, namely miRanda, PITA, PicTar, mirSOM, TargetScan and DIANA-microT, in terms of the most used statistical measures. We demonstrate that our method produces the greatest number of predictions with respect to the other ones, exhibiting good results for both species, reaching the for example the highest percentage of sensitivity of 31 and 30.5 %, respectively for Homo sapiens and for C. elegans. All the predicted interaction are freely available at the following url: http://tblab.pa.icar.cnr.it/public/miRNATIP/

Background
Methods
Results and discussion
Conclusion and future work

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.