Abstract
Oligonucleotides are small non-coding regulatory RNA or DNA sequences that bind to specific mRNA locations to impart gene regulation. Identification of oligonucleotides from other small non-coding RNA sequences such as miRNAs, piRNAs etc. is still challenging as oligos exhibit a notable overlap in sequence length and properties with these RNA categories. This work focuses on a probabilistic oligonucleotide classification method based on its distinct underlying feature vectors to identify oligos from other regulatory classes. We propose a computational approach developed using a probabilistic neural network (PNN) based on oligo: target binding characteristics. The performance measure showed promising results when compared with other existing computational methods. Role and contribution of extracted features was estimated using the receiver operating curves. Our study suggests the potentiality of probabilistic approaches over non-probabilistic techniques in oligonucleotide classification problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.