Abstract

Plants have been naturally gifted with mechanisms to adjust under very high or low nutrient concentrations. Heavy metal toxicity is considered as a major growth and yield-limiting factor for plants. This stress includes essential as well as non-essential metals. MicroRNAs (miRNAs) are known for mediating post-transcriptional regulation by cleaving transcripts or translational inhibition. It is commonly agreed that an extensive understanding of plant miRNAs will significantly help in the induction of tolerance against environmental stresses. With the introduction of the latest technology like next generation sequencing (NGS), a growing figure of miRNAs has been productively recognized in several plants for their diverse roles. These miRNAs are well-known modulators of plant responses to heavy metal (HM) stress. Data regarding metal-responsive miRNAs point out the vital role of plant miRNAs in supplementing metal detoxification by means of transcription factors (TF) or gene regulation. Acting as systemic signals, miRNAs also synchronize different physiological processes for plant responses to metal toxicities. In contrast to practicing techniques, using miRNA is a greatly helpful, pragmatic, and feasible approach. The earlier findings point towards miRNAs as a prospective target to engineer heavy metal tolerance in plants. Therefore, there is a need to augment our knowledge about the orchestrated functions of miRNAs during HM stress. We reviewed the deterministic significance of plant miRNAs in heavy metal tolerance and their role in mediating plant responses to HM toxicities. This review also summarized the topical developments by identification and validation of different metal stress-responsive miRNAs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.