Abstract

Plant growth and metabolisms are regulated by some heavy metals found in Earth's crust because they are active constituents of various enzymes. However, their increased concentration may lead to different toxic effects, inhibiting plant growth and development. There are some plants that are capable of surviving in the presence of heavy metals, apparently by adapting the mechanism that involved in common homeostasis as well as removal of metal ions. Plants have diverse mechanisms for metal detoxification, enabling them to tolerate heavy metal stress. The defense systems against heavy metal stress include mycorrhizae, cellular exudates, plasma membrane, heat shock proteins, phytochelatins (PCs), metallothioneins (MTs), organic acids, and amino acids. All the mechanism involved the tolerance of heavy metal concentration at cellular level to avoid the negative impacts. Extracellular plants include roles for mycorrhizae and extracellular exudates in the plasma membrane either by dropping by absorption of heavy metal or by inducing the efflux pumping of metal ions. On the other hand, intracellularly heat shock proteins, MTs, organic acids, amino acids, and PCs also play a vital role in tolerance of different heavy metals. Few metal transporters have been identified in the past few years that actively participate in tolerance of metal specificity. Enhanced application of molecular genetics has shown their eminent contribution in understanding the mechanism of heavy metal tolerance in plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call