Abstract
Chemotherapy-induced autophagy activation often contributes to cancer resistance. MiRNA-30a (miR-30a) is a potent inhibitor of autophagy by downregulating Beclin-1. In this study, we characterized the role of miR-30a in sorafenib-induced activity in renal cell carcinoma (RCC) cells. We found that expression of miR-30a was significantly downregulated in several human RCC tissues and in RCC cell lines. Accordingly, its targeted gene Beclin-1 was upregulated. Sorafenib activated autophagy in RCC cells (786-0 and A489 lines), evidenced by p62 degradation, Beclin-1/autophagy protein 5 (ATG-5) upregulation and light chain (LC)3B-I/-II conversion. Exogenously expressing miR-30a in 786-0 or A489 cells inhibited Beclin-1 expression and enhanced sorafenib-induced cytotoxicity. In contrast, knockdown of miR-30a by introducing antagomiR-30a increased Beclin-1 expression, and inhibited sorafenib-induced cytotoxicity against RCC cells. Autophagy inhibitors, including chloroquine, 3-methyaldenine or Bafliomycin A1, enhanced sorafenib activity, causing substantial cell apoptosis. Meanwhile, knockdown of Beclin-1 or ATG-5 by targeted siRNAs also increased sorafenib-induced cytotoxicity in above RCC cells. These findings indicate that dysregulation of miR-30a in RCC may interfere with the effectiveness of sorafenib-mediated apoptosis by an autophagy-dependent pathway, thus representing a novel potential therapeutic target for RCC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.