Abstract

PurposemicroRNAs are thought to play crucial roles in tumorigenesis. Dysregulation of miR-488 has been implicated to be involved in several cancer progressions. However, the biological functions of miR-488 in renal cell carcinoma (RCC) remain unclear. This study aimed to explore the molecular mechanism underlying the role of miR-488 in RCC development.Materials and methodsThe expression levels of miR-488 were detected in 38 paired RCC tumor samples and cell lines by quantitative real-time polymerase chain reaction method. miR-488 was upregulated by mimics transfection in RCC cell lines. MTT, colony formation, transwell assay, flow cytometry assay, and a xenograft model were performed to determine cell proliferation, invasion, migration, epithelial-to-mesenchymal transition, and apoptosis in vitro and in vivo. Moreover, the potential target of miR-488 was verified by dual-luciferase reporter assay, quantitative real-time polymerase chain reaction, and Western blot. The correlation between miR-488 expression and its target gene expression was confirmed by Spearman’s correlation analysis in 38 selected RCC tissue samples.ResultsWe found that miR-488 was remarkably downregulated in human RCC samples and cell lines compared with paired normal tissues and cell lines. Functional investigations revealed that overexpression of miR-488 significantly suppressed cell proliferation, invasion, and migration, and promoted cell apoptosis in RCC cells. Nucleosome binding protein 1 (high-mobility group nucleosome binding domain 5 [HMGN5]) was identified as a direct target of miR-488, and an inverse relationship was found between miR-488 expression and HMGN5 mRNA levels in RCC specimens. Rescue experiments suggested that restoration of HMGN5 partially abolished miR-488-mediated cell proliferation and invasion inhibition in RCC cells through regulating phosphatidylinositol 3-kinase/protein kinase B/the mammalian target of rapamycin and epithelial-to-mesenchymal transition signaling pathways.ConclusionThese data indicated that miR-488 acted as a tumor suppressor in RCC proliferation and invasion by targeting HMGN5, which might provide potential therapeutic biomarker for RCC patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.