Abstract

Line-field confocal optical coherence tomography (LC-OCT) is a high-resolution imaging technique based on a combination of time-domain optical coherence tomography and confocal optical microscopy, with line illumination using a spatially coherent broadband light source and line detection using a line camera. We present a LC-OCT device based on a Mirau interferometer consisting of an immersion microscope objective incorporating a miniature interferometer. The device can acquire 17 B-scans per second, which is the fastest acquisition rate reported to date in LC-OCT. By stacking multiple adjacent B-scans, a 3D image with a lateral field of view of 940 μm × 600 μm over a depth of 350 μm can be acquired. Compared to the conventional LC-OCT devices based on a Linnik interferometer, this Mirau-based device has advantages in terms of compactness, weight, and B-scan acquisition speed. Imaging of skin tissue with near-isotropic resolution of ~1.5 micron is demonstrated in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call