Abstract

MicroRNA host gene (MIRHG) lncRNA is a particular lncRNA subclass that can perform both typical and atypical lncRNA functions. The biological function of MIRHG lncRNA MIR194-2HG in cancer is poorly understood. Loss-of-function studies were performed in vivo and in vitro to reveal the biological function of MIR194-2HG in GC. MicroRNA PCR array, northern blotting, RNA sequencing, chromatin immunoprecipitation, and rescue assays were conducted to uncover the molecular mechanism of MIR194-2HG. In this study, we reported an atypical lncRNA function of MIR194-2HG in GC. MIR194-2HG downregulation was clinically associated with malignant progression and poor prognosis in GC. Functional assays confirmed that MIR194-2HG knockdown significantly promoted GC proliferation and metastasis in vitro and in vivo. Mechanismically, MIR194-2HG was required for the biogenesis of miR-194 and miR-192, which were reported to be tumor-suppressor genes in GC. Moreover, hepatocyte nuclear factor HNF4A directly activated the transcription of MIR194-2HG and its derived miR-194 and miR-192. Meanwhile, BTF3L4 was proved to be a common target gene of miR-192 and miR-194. Rescue assay further confirmed that MIR194-2HG knockdown promotes GC progression through maintaining BTF3L4 overexpression in a miR-194/192-dependent manner. The dysregulated MIR194-2HG/BTF3L4 axis is responsible for GC progression. Targeting HNF4A to inhibit miR-192/194 expression may be a promising strategy for overcoming GC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.