Abstract

Diabetes mellitus (DM) is a complex metabolic disease characterized by hyperglycemia, insulin resistance and pancreatic β-cell dysfunction. There are evidences showed that microRNAs (miRNAs) play important roles in DM. The purpose of our study was to determine the role of miR-124-3p in DM. Quantitative reverse transcription PCR (qRT-PCR) was applied to measure the level of miR- 124-3p in peripheral blood from healthy control patients and DM patients. Then we explored the effects of miR-124-3p inhibitor on the secretion of insulin of pancreatic β-cells. Moreover, we determined the effects of miR-124-3p inhibitor on the apoptosis and viability of pancreatic β-cells through flow cytometry and MTT assay. And we also used western blotting to detect the protein expression of cleaved-caspase3/pro-caspase3, and the activity of caspase3 was detected. In addition, we confirmed the direct target of miR-124-3p using Dual luciferase reporter assay. Our data showed that in the blood of DM patients, SFRP5 was significantly reduced, while miR-124-3p was increased significantly. Furthermore, we found that down-regulation of miR-124-3p increased total insulin content in INS-1 cells, enhanced insulin secretion in INS-1 cells. Furthermore, we revealed that miR-124-3p inhibitor enhanced INS-1 cell viability, decreased apoptosis of INS-1 cells, increased pro-caspase3 expression, decreased cleaved-caspase3 expression and caspase3 activity. In addition, we proved SFRP5 was a direct target of miR-124-3p in pancreatic β-cells. Moreover, SFRP5-siRNA reversed all the effects of miR-124-3p knockdown on pancreatic β-cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call