Abstract

By employing bioinformatics scanning approaches and luciferase reporter, our previous study showed that two less common human miRNAs, miR-875 and miR-3144, target a conserved site in the genomes of most high-risk human papillomaviruses (HR-HPVs). In this study, we found that the site targeted by miR-875 and miR-3144 overlapped with the 5′ alternative splice site of E6E7 transcripts in HPV16. Using HPV16+ SiHa cells, we showed that high levels of miR-875 and miR-3144 reduced the abundance of unspliced E6, while they promoted three E6* spliced transcripts and decreased the expression levels of E6/E7 oncoproteins and epidermal growth factor receptor (EGFR). A potential miR-875 target site was predicted in EGFR. Meanwhile, depletion of EGFR resulted in a failure to promote E6* but maintained the suppression of unspliced E6 driven by miR-875 and miR-3144. The data suggest that these two miRNAs switch the E6/E6* ratio through both the EGFR pathway and direct targeting. Here, we demonstrate for the first time that human miRNAs regulate the HPV splice isoforms. Furthermore, miRNA-875 and miRNA-3144 are only found in vertebrates and Homo sapiens, and the binding site in EGFR is highly conserved in Boreoeutheria. Our findings highlight the tumour-suppressing effect of miRNAs that possibly appeared in the late stage of biological evolution. AbbreviationsUnlabelled TableHPVhuman papillomavirusHR-HPVshigh-risk human papillomavirusesDNAdeoxyribonucleic acidRNAribonucleic acidmRNAmessage RNAmiRNAsmicroRNAsORFopen reading framesssplice siteflfull-length E6EGFepidermal growth factorEGFRepidermal growth factor receptor

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call