Abstract
Background/PurposeThe local inflammatory microenvironment created by periodontitis negatively impacts periodontal tissue regeneration, necessitating the development of methods to enhance the regenerative capacity of stem cells. This study explored the regulatory role and underlying mechanism of miR-508-5p in the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs). Materials and methodsThe regulatory roles of miR-508–5p in osteogenic differentiation of hPDLSCs were investigated through its inhibition or overexpression. Expression of the sex-determining region Y-related HMG-box 11 (SOX11) and osteogenic markers was analyzed using Western blot and real-time PCR. Osteogenesis was measured using alizarin red S (ARS) staining and alkaline phosphatase (ALP) staining. A dual luciferase reporter assay was performed to confirm SOX11 as a target of miR-508-5p. ResultsDuring the osteogenic differentiation of hPDLSCs, miR-508-5p expression level gradually decreased, while that of SOX11 increased. miR-508-5p inhibition significantly promoted osteogenesis in hPDLSCs, while overexpression inhibited the process. SOX11 overexpression reversed the suppressive effects of miR-508-5p on the osteogenic differentiation of hPDLSCs. miR-508–5p downregulation significantly increased SOX11; a dual luciferase reporter assay provided evidence for their direct targeting. ConclusionmiR-508-5p downregulation promotes the osteogenic differentiation of hPDLSCs by targeting SOX11.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have