Abstract

BackgroundMicroRNA-495 (miR-495) is a post-translational modulator that performs several functions, and it is involved in several disease states. On the other hand, the physiological functions of miR-495 in H2O2 stimulated mouse spinal cord neuronal dysfunction have not yet been fully understood.MethodsIn this study, we speculated that miR-495 may regulate the expression of STAT3 in the processes of neuronal proliferation and apoptosis following spinal cord injury (SCI). Cell viability was assessed with methyl thiazolyl tetrazolium (MTT) assay. Caspase-3 activity was assayed with ELISA. Cellular apoptotic changes were measured with TUNEL assay. Intracellular ROS production was determined by measuring uptake of dichlorodihydrofluorescein diacetate (DCFH-DA; PCR was used to assay the mRNA expression of STAT3 gene bearing predicted targeting positions for miR-495, while qRT-PCR was used to measure miR-495 mRNA.ResultsThe results demonstrated that treatment of SCNs with H2O2 led to a significant decrease in cell survival, while it enhanced apoptosis. The H2O2 treatment induced cell membrane dysfunction, and increased ROS levels and DNA damage. Interestingly, the expression of miR-495 was markedly suppressed when SCNs were exposed to H2O2. However, miR-495 overexpression reversed H2O2-induced cytotoxicity and apoptosis in SCNs. Moreover, H2O2 exposure elevated protein and mRNA concentrations of STAT3 in SCNs. Bioinformatics analysis showed likely binding domains of miR-495 in the 3'-untranslated regions of STAT3 in SCNs. MiR-495 loss-of-function and gain-of-function significantly up-regulated and down-regulated both STAT3 mRNA and protein expressions, respectively, in SCNs.ConclusionsmiR-495 overexpression inhibited H2O2-induced SCN dysfunction. This mechanism was mediated through the down-regulation of STAT3 expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call