Abstract

MicroRNA 484 (miR-484) plays a pivotal role in the development and progression of different diseases and is typically described as a mitochondrial regulator. Whether miR-484 is involved in lipid metabolism or exerts a role in nonalcoholic fatty liver disease remains unclear. miR-484 levels were examined in the livers of male mice fed a high-fat diet and in hepatocytes treated with free fatty acids. Sorbin and SH3 structural domain-containing protein 2 (Sorbs2) were identified as a novel target of miR-484 by sequencing mRNA in the livers of miR-484 knockout mice. Sorbs2 liver-specific knockdown mice were constructed by tail vein injection of adeno-associated virus vector to miR-484 knockout mice. In addition, genetic manipulation of SORBS2 was performed in human hepatocyte lines, mouse primary hepatocytes, and the liver. Serum and hepatic miR-484 levels are upregulated in nonalcoholic fatty liver disease mice. miR-484 knockdown ameliorated hepatocyte steatosis, whereas miR-484 overexpression increased hepatocyte lipid load. miR-484 knockdown-mediated alleviation of hepatic steatosis, liver injury, inflammation, and apoptosis was compromised after high-fat diet-induced knockdown of Sorbs2 in mouse liver and free fatty acid-induced primary mouse hepatocytes. These results identify Sorbs2-mediated mitochondrial β-oxidation and apoptosis that promote miR-484 knockdown-mediated remission of hepatic steatosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.