Abstract

Acrylamide (AA), a potential carcinogen, is commonly formed in foods rich in carbohydrates at high heat. It is known that AA-induced mitochondrial dysfunction is responsible for its toxicity. Previously we found AA exposure increased miR-27a-5p expression in livers of SD rats. Here, the regulation mechanism of miR-27a-5p in mitochondrial dysfunction was investigated in rat liver cell lines (IAR20) and SD rats. The results showed that the overexpressed miR-27a-5p contributes to modulating mitochondrial dysfunction and Btf3 is identified as its target gene. The knockdown of Btf3 increases the cleaved PARP1 level and the phosphorylation of ATM and p53, which results in mitochondria-dependent apoptosis. Therefore, the miR-27a-5p-Btf3-ATM-p53 axis might play a vital role in the promotion of AA-induced cell apoptosis through disrupting mitochondrial structure and function. This would provide a potential target for the assessment and intervention of AA toxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.