Abstract

With global warming, heat stress has become a primary factor that compromises the health and milk quality of dairy cows. Here, we investigated the function and underlying regulatory mechanism of miR-27a-3p in bovine mammary epithelial cells (BMECs) under heat-stress conditions. The current study showed that miR-27a-3p could prevent heat stress-induced BMEC oxidative stress and mitochondrial damage by regulating the balance between mitochondrial fission and fusion processes. Importantly, we found that miR-27a-3p could increase cell proliferation under heat stress conditions by regulating the MEK/ERK pathway and cyclin D1/E1. Interestingly, miR-27a-3p is also involved in the regulation of milk protein synthesis-related protein expression, such as CSN2 and ELF5. Inhibition of the MEK/ERK signaling pathway by AZD6244 blocked the regulatory function of miR-27a-3p in cell proliferation and milk protein synthesis in BMECs under heat stress conditions. Our findings demonstrated that miR-27a-3p protects BMECs from heat stress-induced oxidative stress and mitochondrial damage through the MEK/ERK pathway, thereby promoting BMECs proliferation and lactation in dairy cows. The potential regulatory mechanism of miR-27a-3p in attenuating heat stress-induced apoptosis and lactation defect in BMECs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.