Abstract

BackgroundMitochondrial calcium uniporter (MCU) is an important ion channel regulating calcium transport across the mitochondrial membrane. Calcium signaling, particularly via the Ca2+/NFATc1 pathway, has been identified as an important mediator of the osteoclast differentiation that leads to osteolysis around implants. The present study aimed to investigate whether down-regulation of MCU using microRNA-25 (miR-25) mimics could reduce osteoclast differentiation induced upon exposure to titanium (Ti) particles.MethodsTi particles were prepared. Osteoclast differentiation of RAW264.7 cells was induced by adding Ti particles and determined by TRAP staining. Calcium oscillation was determined using a dual-wavelength technique. After exposure of the cells in each group to Ti particles or control medium for 5 days, relative MCU and NFATc1 mRNA expression levels were determined by RT-qPCR. MCU and NFATc1 protein expression was determined by western blotting. NFATc1 activation was determined by immunofluorescence staining. Comparisons among multiple groups were conducted using one-way analysis of variance followed by Tukey test, and differences were considered significant if p < 0.05.ResultsMCU expression was reduced in response to miR-25 overexpression during the process of RAW 264.7 cell differentiation induced by Ti particles. Furthermore, osteoclast formation was inhibited, as evidenced by the low amplitude of calcium ion oscillation, reduced NFATc1 activation, and decreased mRNA and protein expression levels of nuclear factor-κB p65 and calmodulin kinases II/IV.ConclusionsRegulation of MCU expression can impact osteoclast differentiation, and the underlying mechanism likely involves the Ca2+/NFATc1 signal pathway. Therefore, MCU may be a promising target in the development of new strategies to prevent and treat periprosthetic osteolysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.