Abstract
Acute respiratory distress syndrome is a disease triggered by severe pulmonary and systemic inflammation that may lead to fibrosis and the decline of lung function. Lung capillary endothelial-to-mesenchymal transition (EndMT) is one of the primary sources of fibroblasts in pulmonary fibrosis. The role of miRNAs as molecular markers of pulmonary fibrosis, and miRNAs as nucleic acid drugs has attracted increasing attention. To mock EndMT process, Human pulmonary microvascular endothelial cells (HPMECs) were induced with lipopolysaccharide (LPS). Similarly, LPS treatment was used to generate a mouse model of LPS-induced EndMT and pulmonary fibrosis. LPS-induced EndMT in HPMECs resulted in a significant reduction of miR-23b-3p. miR-23b-3p inhibited the interstitial transition of HPMECs, and miR-23b-3p could mediate this process via inhibiting dipeptidyl peptidase-4 (DPP4). Dual-luciferase assays confirmed the regulatory mechanism of miR-23b-3p. In our mouse model of LPS-induced pulmonary fibrosis, miR-23b-3p and a DPP4 inhibitor (sitagliptin) individually alleviated LPS-induced EndMT progression and pulmonary fibrosis, and their combined use achieved the strongest remission effect. To sum up, miR-23b-3p alleviates EndMT in pulmonary fibrosis by inhibiting the expression of DPP4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.