Abstract

The pathophysiology of acute respiratory distress syndrome (ARDS) involves cytokine storms, alveolar-capillary barrier destruction, and fibrotic progression. Pulmonary interstitial fibrosis is an important factor affecting the prognosis of ARDS patients. Endothelial-to-mesenchymal transition (EndMT) plays an important role in the development of fibrotic diseases, and the occurrence of EndMT has been observed in experimental models of LPS-induced acute lung injury (ALI). Apelin is an endogenous active polypeptide that plays an important role in maintaining endothelial cell homeostasis and inhibiting fibrotic progression in various diseases. However, whether apelin attenuates EndMT in ALI and post-ALI pulmonary fibrosis remains unclear. We analyzed the serum levels of apelin-13 in patients with sepsis-associated ARDS to examine its possible clinical value. A murine model of LPS-induced pulmonary fibrosis and an LPS-challenged endothelial cell injury model were used to analyze the protective effect and underlying mechanism of apelin-13. Mice were treated with apelin-13 by i.p. injection, and human pulmonary microvascular endothelial cells were incubated with apelin-13 in vitro . We found that the circulating apelin-13 levels were significantly elevated in sepsis-associated ARDS patients compared with healthy controls. Our study also confirmed that LPS induced EndMT progression and pulmonary fibrosis, which were characterized by decreased CD31 expression and increased α-smooth muscle actin expression and collagen deposition. LPS also stimulated the production of transforming growth factor β1 and activated the Smad signaling pathway. However, apelin-13 treatment significantly attenuated these changes. Our findings suggest that apelin-13 may be a novel biomarker in patients with sepsis-associated ARDS. These results demonstrate that apelin-13 ameliorates LPS-induced EndMT and post-ALI pulmonary fibrosis by suppressing transforming growth factor β1 signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.