Abstract

Aim: We aimed to investigate the protection of exogenous miR-19a/19b with bone marrow-derived mesenchymal stem cell (BM-MSC) transplantation on cardiac function and inhibition of fibrosis in myocardial infarction (MI). Materials & methods: BM-MSC-derived exosomes were used to deliver miR-19a/19b (exo/miR-19a/19b) to the cultured cardiac HL-1 cells, and the apoptosis of cells were evaluated. Exo/miR-19a/19b and BM-MSCs were also transplanted to an in vivo MI mouse model. The recovery of cardiac function was assessed and the level of cardiac fibrosis was determined. Results: Exo/miR-19a/19b and MSCs reduced the area of cardiac fibrosis in the heart tissue in the mouse MI model. Using BM-MSC-derived exosomes as a vehicle, miR-19a/19b significantly suppressed the apoptosis of cardiac HL-1 cells. The combination of Exo/miR-19a/19b and MSC transplantation significantly enhanced the recovery of cardiac function and reduced cardiac fibrosis in the MI model. Conclusion: Our study provides an effective regenerative intervention strategy to attenuate the damage of MI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call