Abstract
Due to its complex pathological mechanisms, bone cancer pain (BCP) has become an increasingly challenging clinical issue, there is an urgent need to identify the underlying mechanisms of BCP. In our present study, we found that decreased expression of miR-199a-3p in spinal dorsal horn (SDH) neurons contributed to BCP hypersensitivity. Intrathecal administration of miR-199a-3p agomir alleviated the initiation of tumor inoculation induced pain hypersensitivity and suppressed the expression of DNMT3A. Subsequently, luciferase assays confirmed direct binding between miR-199a-3p and Dnmt3a mRNA. AAV-DNMT3A-shRNA microinjection relieved mechanical hyperalgesia and upregulated the expression of Nrf2 levels in BCP. In naïve rats, Overexpression of DNMT3A yielded the opposite effects. Finally, increase of DNMT3A by lentiviral vector abolished miR-199a-3p-mediated alleviation hypersensitivity effects on BCP progression. Taken these together, our findings highlighted a novel contribution of miR‐199a-3p to BCP and provided a fresh outlook on potential mechanism research for BCP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.