Abstract

BackgroundHepatocellular carcinoma (HCC) remains one of the most lethal cancers. MicroRNA-155 (miR-155) and collagen triple helix repeat containing 1 (CTHRC1) were found to be involved in hepatocarcinogenesis, but their detailed functions in HCC are unclear. Here, we aimed to investigate the underlying role of miR-155-5p and CTHRC1 in HCC.MethodsmiR-155-5p and CTHRC1 expression levels were detected by qRT-PCR, IHC and WB in HCC patients and cell lines. Dual-luciferase assay, qRT-PCR and WB were used to validate the target interaction between miR-155-5p and CTHRC1. Biological behaviors, including apoptosis, cell cycle progression, and cell proliferation, invasion and migration, were measured by flow cytometry, CCK-8 assay and Transwell tests. A xenograft model was established to examine the effects of miR-155-5p and CTHRC1 on tumor formation. WB was finally utilized to identify the role of GSK-3β-involved Wnt/β-catenin signaling in HCC growth and metastasis.ResultsOur results showed that miR-155-5p and CTHRC1 were down-regulated and up-regulated, respectively, in HCC patients and cell lines. Dual-luciferase assay verified that CTHRC1 was the direct target of miR-155-5p. Moreover, elevated miR-155-5p expression promoted apoptosis but suppressed cell cycle progression and cell proliferation, invasion and migration in vitro and facilitated tumor formation in vivo; elevated CTHRC1 expression abolished these biological effects. Additionally, miR-155-5p overexpression increased metastasis- and anti-apoptosis-related protein expression and decreased pro-apoptosis-related protein expression, while forced CTHRC1 expression conserved the expression of these proteins.ConclusionAltogether, our data suggested that miR-155-5p modulated the malignant behaviors of HCC by targeting CTHRC1 and regulating GSK-3β-involved Wnt/β-catenin signaling; thereby, miR-155-5p and CTHRC1 might be promising therapeutic targets for HCC patients.

Highlights

  • Liver cancer has been one of the most fatal and prevalent malignant tumors in the human population worldwide, and hepatocellular carcinoma (HCC) is the most common type of liver cancer, accounting for over 90% of all cases [1]

  • Results miR‐155‐5p and collagen triple helix repeat containing 1 (CTHRC1) were down‐regulated and up‐regulated, respectively, in the carcinoma tissue of HCC patients To investigate the expression of miR-155-5p and CTHRC1 in para-carcinoma tissue and carcinoma tissue of HCC patients, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was applied to detect their expression levels

  • We further examined the influence of miR-155-5p on the expression of CTHRC1 by detecting CTHRC1 messenger RNA (mRNA) and protein levels after transfection with the control psiCHECK-2 plasmid, negative control (NC) plasmid or miR-155-5p mimics

Read more

Summary

Introduction

Liver cancer has been one of the most fatal and prevalent malignant tumors in the human population worldwide, and hepatocellular carcinoma (HCC) is the most common type of liver cancer, accounting for over 90% of all cases [1]. Most patients with HCC that are exhibiting evident clinical symptoms are diagnosed at the intermediate or advanced disease stages, where satisfactory curative approaches are often not feasible [5, 6]. Hepatocellular carcinoma (HCC) remains one of the most lethal cancers. MicroRNA-155 (miR-155) and collagen triple helix repeat containing 1 (CTHRC1) were found to be involved in hepatocarcinogenesis, but their detailed functions in HCC are unclear. We aimed to investigate the underlying role of miR-155-5p and CTHRC1 in HCC

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call