Abstract
MicroRNAs (miRNAs) play an important role in cardiac function and metabolism. However, whether they regulate insulin resistance (IR) of cardiomyocytes remains unclear. The aim of the present study was to shed light on this issue with a focus on miR-150. We found here that miR-150 level was elevated in myocardium of type 2 diabetes mellitus (T2DM) rat model and in insulin-resistant cardiomyocytes induced by high glucose (25 mM) and high insulin (1 μM). Deregulation of miR-150 downregulated the protein and mRNA levels of glucose transporter 4 (GLUT4) as assessed by western blot, real-time polymerase chain reaction (qPCR), and immunofluorescence assays. Overexpression of miR-150 inhibited glucose utilization in cardiomyocytes as detected by 2-deoxyglucose transport and glucose consumption assays. In contrast, knockdown of miR-150 significantly increased glucose uptake in cardiomyocytes. Moreover, GLUT4 translocation was increased after transfection of miR-150 inhibitor (AMO-150). Collectively, miR-150 reduced glucose utilization by directly decreasing the expression and translocation of GLUT4 in the cardiomyocytes with IR and therefore might be a new therapeutic target for metabolic diseases such as T2DM.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.