Abstract

In endothelial cells, miR-148a-3p is involved in several pathological pathways, including chronic inflammatory conditions. However, the molecular mechanism of miR-148a-3p in endothelial inflammatory states is, to date, not fully elucidated. To this end, we investigated the involvement of miR-148a-3p in mitochondrial dysfunction and cell death pathways in human aortic endothelial cells (teloHAECs) treated with interleukin-6 (IL-6), a major driver of vascular dysfunction. The results showed that during IL6-activated inflammatory pathways, including increased protein levels of sirtuin 7 (SIRT7) (p < 0.01), mitochondrial stress (p < 0.001), and apoptosis (p < 0.01), a decreased expression of miR-148a-3p was observed (p < 0.01). The employment of a miR-148a mimic counteracted the IL-6-induced cytokine release (p < 0.01) and apoptotic cell death (p < 0.01), and ameliorated mitochondria redox homeostasis and respiration (p < 0.01). The targeted relationship between miR-148a-3p and SIRT7 was predicted by a bioinformatics database analysis and validated via the dual-luciferase reporter assay. Mechanistically, miR-148a-3p targets the 3′ untranslated regions of SIRT7 mRNA, downregulating its expression (p < 0.01). Herein, these in vitro results support the role of the miR-148a-3p/SIRT7 axis in counteracting mitochondrial damage and apoptosis during endothelial inflammation, unveiling a novel target for future strategies to prevent endothelial dysfunction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call