Abstract
PF4 is a pro-atherosclerotic molecule. Endothelial CD40, upon binding to its ligand CD40L, induces endothelial cell (EC) activation, which is a vital pathophysiological process in the initiation and progression of atherosclerosis. However, the relationship between PF4 and endothelial CD40 remains elusive. This study aims to investigate whether and how PF4 affects endothelial CD40 expression using primary HAECs. PF4 treatment down-regulated sirtuin 1 (SIRT1) expression but upregulated the expression of acetylated NF-κB p65 (Ac-p65) and CD40 in HAECs in a concentration- and time-dependent manner. Pretreatment with SIRT1 agonist (SRT1720 or RSV) or SIRT1-overexpressing lentivirus attenuated PF4-induced Ac-p65 and CD40 expression in HAECs, whereas preincubation with SIRT1 antagonist (NAM or EX527) or SIRT1 shRNA had the opposite effect. To investigate whether NF-κB/p65 signaling pathway modulates CD40 expression in PF4-treated HAECs, PDTC, a NF-κB inhibitor, and p65-shRNA were introduced. PDTC or p65-shRNA treatment down-regulated Ac-p65 expression in HAECs. PDTC or p65-shRNA preincubation suppressed CD40 expression in HAECs after PF4 treatment. To better determine whether SIRT1 regulates CD40 expression in PF4-treated HAECs via the NF-κB/p65 signaling pathway, p65-knockdown HAECs were preincubated with SIRT1 agonists before PF4 treatment. SIRT1 agonist preincubation further decreased CD40 expression in p65-knockdown HAECs treated with PF4. Moreover, PF4 treatment promoted p65 nuclear translocation in HAECs. The results of dual luciferase assay demonstrated that four NF-κB binding sites in the promoter of human CD40 gene were activated in PF4-treated HAECs. In conclusion, our findings suggest that PF4 treatment facilitates CD40 expression in HAECs through the SIRT1/NF-κB/p65 pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: In Vitro Cellular & Developmental Biology - Animal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.