Abstract
The growth and migration of airway smooth muscle cells (ASMCs) are dysregulated in asthma. MicroRNAs (miRNAs) are associated with the pathogenesis of many diseases including asthma. Instead, the function of miR-140- 3pin ASMCs' dysregulation in asthma remains inconclusive. This study aimed to explore the role and mechanism of miR-140-3p in ASMCs' dysregulation. In this experimental study, ASMCs were stimulated with platelet-derived growth factor (PDGF)- BB to construct an asthma cell model in vitro. MiR-140-3p expression level in the plasma of 50 asthmatic patients and 50 healthy volunteers was measured with quantitative real-time polymerase chain reaction (qRT-PCR). Besides, the enzyme-linked immunosorbent assay (ELISA) was applied to detect the contents of interleukin (IL) -1β, IL-6, and tumor necrosis factor-α (TNF-α) in the cell culture supernatant of ASMCs. Additionally, CCK-8 and transwell assays were adopted to probe the multiplication and migration of ASMCs. In addition, the western blot was employed to examine HMGB1, JAK2, and STAT3 protein expressions in ASMCs after miR-140-3p and HMGB1 were selectively regulated. miR-140-3p expression was declined in asthmatic patients' plasma and ASMCs stimulated by PDGF-BB. Upregulating miR-140-3p suppressed the viability and migration of the cells and alleviated the inflammatory response while inhibiting miR-140-3p showed opposite effects. Additionally, HMGB1 was testified as the target of miR-140-3p. HMGB1 overexpression could reverse the impact of miR-140-3p upregulation on the inflammatory response of ASMCs stimulated by PDGF-BB. MiR-140-3p could repress the activation of JAK2/STAT3 via suppressing HMGB1. In ASMCs, miR-140-3p can inhibit the JAK2/STAT3 signaling pathway by targeting HMGB1, thus ameliorating airway inflammation and remodeling in the pathogenesis of asthma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.