Abstract

Abnormal proliferation and migration of airway smooth muscle (ASM) cells serve roles in airway remodeling, and contribute to airway hyper‑responsiveness. Follistatin‑like protein1 (FSTL1) is a secreted glycoprotein that belongs to the follistatin family of proteins. It was reported that in the lungs of patients suffering from severe asthma, FSTL1 is highly expressed by macrophages. However, the role of FSTL1 in ASM cell proliferation and migration remains unknown. The present study aimed to investigate the role of FSTL1 in cell proliferation and migration mediated by platelet‑derived growth factor subunitB (PDGF‑BB) in human ASM cells. The results of the present study demonstrated that PDGF‑BB stimulation upregulated FSTL1 expression levels in ASM cells invitro. Knockdown of FSTL1 inhibited cell proliferation and arrested the cell cycle in the G2/M phase in PDGF‑BB‑stimulated ASM cells. Additionally, knockdown of FSTL1 inhibited PDGF‑BB‑induced ASM cell migration. Furthermore, FSTL1 knockdown caused the downregulation of phosphorylated (p)‑extracellular signal‑regulated kinase (ERK) and p‑protein kinaseB (AKT) expression levels induced by PDGF‑BB in ASM cells. In conclusion, the present study demonstrated that knockdown of FSTL1 inhibited ASM cell proliferation and migration induced by PDGF‑BB, at least partially via inhibiting the activation of ERK and AKT. FSTL1 may therefore represent a novel therapeutic target for airway remodeling in childhood asthma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.