Abstract

Growing evidence points at an association between microRNAs and tumor development. Although dysregulation of microRNA-103a-3p (miR-103a-3p) in multiple human cancers has been reported, its expression in prostate cancer (PCa) remains unknown and there is currently no research on the relationship between miR-103a-3p and tumor protein D52 (TPD52) in PCa. Our aim in this study was to explore the effect and potential mechanism of miR-103a-3p in PCa. qRT-PCR was performed to detected the level of miR-103a-3p in PCa tissues and cells, and in normal tissues. Colony, wound-healing, invasion, proliferation, and apoptosis assays were performed in search miR-103a-3p effect in PCa. TargetScan was used to predict potential targets of miR-103a-3p. Additionally, dual-luciferase reporter, western blot, and immunofluorescence assays were performed to detected the target gene of miR-103a-3p. Finally, we explore the differences in tumor xenograft experiments between nude mice injected with stably miR-103a-3p expressing cells and those expressing a miR-negative control. Low level of miR-103a-3p was detected in PCa tissues and cells, when compared with normal tissues. Enhancement of miR-103a-3p significantly inhibited migration and invasion of PCa cells, and negatively regulated expression of the oncogenic tumor protein D52 (TPD52) through direct binding to its 3’-UTR. Interestingly, overexpression of TPD52 significantly attenuated the effect of mir-103a-3p on PCa. Our study provides the first evidence that miR-103a-3p directly targets TPD52 and inhibits the proliferation and invasion of PCa. This finding helps clarify the role of mir-103a-3p-TPD52 axis in PCa and may provide new therapeutic targets for the disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.