Abstract
Exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSC-Ex) play important roles in immune and inflammation diseases. However, the role of hUCMSC-Ex in atherosclerosis has not been elucidated. In this study, the isolated exosomes were identified by transmission electron microscopy and nanoparticle tracking analysis. Exosome marker protein levels were increased in the hUCMSC-Ex compared with those in hUCMSC suspension, indicating that exosomes were successfully isolated from hUCMSCs. Furthermore, eosinophils were treated with oxidized low-density lipoprotein (ox-LDL) to construct inflammation model and then incubated with hUCMSC-Ex derived from hUCMSCs which were transfected with miR-100-5p mimic or miR-100-5p inhibitor. We found that hUCMSC-Ex increased miR-100-5p expression, inhibited cell migration, promoted cell apoptosis, and reduced inflammatory cytokine levels in ox-LDL-treated eosinophils, and miR-100-5p overexpression in hUCMSCs enhanced these effects, while miR-100-5p inhibition reversed these effects. Moreover, frizzled 5 (FZD5) was a target gene of miR-100-5p. FZD5 overexpression reversed the inhibitory effects of hUCMSC-Ex-miR-100-5p on cell progression and inflammation in eosinophils. Additionally, hUCMSC-Ex-miR-100-5p decreased the expression of cyclin D1 and β-catenin proteins. Wnt/β-catenin pathway activator BML-284 effectively reversed the effects of hUCMSC-Ex-miR-100-5p on cell progression and inflammation in eosinophils. ApoE-/- mice were fed with high-fat diet to construct an atherosclerosis mice model, and hUCMSC-Ex was injected into mice. hUCMSC-Ex reduced atherosclerotic plaque area and inflammation response in atherosclerosis mice. This study demonstrates that hUCMSC-Ex-miR-100-5p inhibits cell progression and inflammatory response in eosinophils via the FZD5/Wnt/β-catenin pathway, thereby alleviating atherosclerosis progression.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have