Abstract

Fingerprints offer one of the most reliable biometric traits that can be used for uniquely identifying a person. This proposed work demonstrates the use of graph theory in the field of fingerprint identification, in which a fingerprint is casted to a weighted complete graph and a weight matrix of this graph is used to describe the regions in the image and then checked for biometric authentication without considering Henry's classes. It further implements the concept of graph isomorphism along with edge mapping for matching of fingerprints which portrays the potential of graph-based methods for fingerprint representation, storage, and matching. The proposed algorithm is robust to non-linear distortion, rotation and scaling. The algorithm is tested on a database of Fingerprint Verification Competition (FVC) and has been found to be an efficient and a reliable one as compared to image processing which deals with the entire image for comparison between two fingerprints using pattern recognition

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.