Abstract

Aluminum has been extensively used as a conductor material in numerous electronic devices, including solar cells, light-emitting diodes (LEDs), organic LEDs (OLEDs), and thin-film transistors. However, its spiking surface and easy electromigration have limited its performance. To overcome this, a trace amount of nonprecious copper dopant has been proven effective in enhancing device reliability. Nevertheless, a comprehensive investigation regarding the effect of copper doping on the morphology at the aluminum conductor-organic interface is yet to be done. We had hence fabricated a series of green OLED devices to probe how copper doping affected the aluminum conductor, morphologically and electrically, and the corresponding device's efficiency and lifetime performance. We found 4 wt % copper doping to be highly effective in enabling a spike-less and smoother aluminum interface, which in turn enabled the fabrication of devices with much higher efficiency and lifetime. Specifically, the corresponding power efficacy at 1000 cd/m2 was increased from 32 to 42 lm/W and the lifetime increased from 75 to 263 h, an increment of 250%. Atomic force microscopy confirmed that the copper doping did help smooth out the conductor interface as deposited and reduce electromigration upon operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.