Abstract
The first historical encounter with Poisson-type algebras is with Hamiltonian mechanics. With the abstraction of many notions in Physics, Hamiltonian systems were geometrized into manifolds that model the set of all possible configurations of the system, and the cotangent bundle of this manifold describes its phase space, which is endowed with a Poisson structure. Poisson brackets led to other algebraic structures, and the notion of Poisson-type algebra arose, including transposed Poisson algebras, Novikov–Poisson algebras, or commutative pre-Lie algebras, for example. These types of algebras have long gained popularity in the scientific world and are not only of their own interest to study, but are also an important tool for researching other mathematical and physical objects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.