Abstract

Current neural networks are accumulating accolades for their performance on a variety of real-world computational tasks including recognition, classification, regression, and prediction, yet there are few scalable architectures that have emerged to address the challenges posed by their computation. This paper introduces Minitaur, an event-driven neural network accelerator, which is designed for low power and high performance. As an field-programmable gate array-based system, it can be integrated into existing robotics or it can offload computationally expensive neural network tasks from the CPU. The version presented here implements a spiking deep network which achieves 19 million postsynaptic currents per second on 1.5 W of power and supports up to 65 K neurons per board. The system records 92% accuracy on the MNIST handwritten digit classification and 71% accuracy on the 20 newsgroups classification data set. Due to its event-driven nature, it allows for trading off between accuracy and latency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.