Abstract

Chemical pesticides have an immense role in curbing the infection of plant viruses and soil-borne pathogens of high valued crops. However, the usage of chemical pesticides also contributes to the development of resistance among pathogens. Hence, attempts were made in this study to identify a suitable bacterial antagonist for managing viral and fungal pathogens infecting crop plants. Based on our earlier investigations, we identified Bacillus amyloliquefaciens VB7 as a potential antagonist for managing Sclerotinia sclerotiorum infecting carnation, tobacco streak virus infecting cotton and groundnut bud necrosis infecting tomato. Considering the multifaceted action of B. amyloliquefaciens VB7, attempts were made for whole-genome sequencing to assess the antiviral activity against tomato spotted wilt virus infecting chrysanthemum and antifungal action against Fusarium oxysporum f. sp. cubense (Foc). Genome annotation of the isolate B. amyloliquefaciens VB7 was confirmed as B. velezensis VB7 with accession number CP047587. Genome analysis revealed the presence of 9,231,928 reads with an average read length of 149 bp. Assembled genome had 1 contig, with a total length of 3,021,183 bp and an average G+C content of 46.79%. The protein-coding sequences (CDS) in the genome was 3090, transfer RNA (tRNA) genes were 85 with 29 ribosomal RNA (rRNA) genes and 21 repeat regions. The genome of B. velezensis VB7 had 506 hypothetical proteins and 2584 proteins with functional assignments. VB7 genome had the presence of flagellin protein FlaA with 987 nucleotides and translation elongation factor TU (Ef-Tu) with 1191 nucleotides. The identified ORFs were 3911 with 47.22% GC content. Non ribosomal pepide synthetase cluster (NRPS) gene clusters in the genome of VB7, coded for the anti-microbial peptides surfactin, butirosin A/butirosin B, fengycin, difficidin, bacillibactin, bacilysin, and mersacidin the Ripp lanthipeptide. Antiviral action of VB7 was confirmed by suppression of local lesion formation of TSWV in the local lesion host cowpea (Co-7). Moreover, combined application of B. velezensis VB7 with phyto-antiviral principles M. Jalapa and H. cupanioides increased shoot length, shoot diameter, number of flower buds per plant, flower diameter, and fresh weight of chrysanthemum. Further, screening for antifungal action of VB7 expressed antifungal action against Foc in vitro by producing VOC/NVOC compounds, including hexadecanoic acid, linoelaidic acid, octadecanoic acid, clindamycin, formic acid, succinamide, furanone, 4H-pyran, nonanol and oleic acid, contributing to the total suppression of Foc apart from the presence of NRPS gene clusters. Thus, our study confirmed the scope for exploring B. velezensis VB7 on a commercial scale to manage tomato spotted wilt virus, groundnut bud necrosis virus, tobacco streak virus, S. sclerotiorum, and Foc causing panama wilt of banana.

Highlights

  • Management of soil-borne pathogens in high-valued crops with chemical pesticides negatively impacts beneficial microflora dwelling in the rhizoplane

  • B. amyloliquefaciens FZB42 was reported as type strain of B. amyloliquefaciens sub sp. plantarum [34]

  • Our earlier investigation on bacterial antagonists emanated in identifying B. amyloliquefaciens

Read more

Summary

Introduction

Management of soil-borne pathogens in high-valued crops with chemical pesticides negatively impacts beneficial microflora dwelling in the rhizoplane. It induces resistance among the population of soil-borne pathogens. Amidst the various plant growth-promoting rhizobacteria, Bacillus spp. serve as a multifaceted bio-stimulant come immunomodulator with antifungal and antiviral action against several plant pathogens [1,2,3]. Strains of different Bacillus spp. inhibit soil-borne pathogens in varied environmental conditions [4,5]. To understand the treasure in the genome of Bacillus spp., scientists have attempted to unravel the versatility of the genes. The genetic makeup of Bacillus reveals the ability of antagonistic bacteria to produce antimicrobial compounds with volatile and nonvolatile nature, contributing towards the suppression of plant pathogens in a synergistic manner [7,8].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call