Abstract

Traditionally the process of mine development, pit design and long-term scheduling is based on a single deterministic orebody model built by the interpolation of drill hole data using some form of spatial interpolation procedure, e.g. kriging. Typical steps in mine design would include the determination of the ultimate pit, the development of a number of mining phases (pushbacks) and then the development of a life-of-mine schedule. All of these steps would have the aim of maximising the mine’s net present value (NPV), along with meeting numerous other business and physical constraints. There are a number of software packages commercially available and widely used in the mining industry that deal with some or all of these issues. The methods employed by all of these packages treat the process described above in a strictly deterministic way. In reality, given the sparse drill hole data, there is usually significant and variable uncertainty associated with a single or unique deterministic block model. This uncertainty is not captured or used in the planning process. This paper describes work undertaken by the Exploration and Mining Technology Group within BHP Billiton to develop a new mathematical algorithm for mine optimisation under orebody uncertainty. This uncertainty is expressed as a number of conditionally simulated orebody models. This optimisation algorithm is implemented in a new software package. The software uses a number of proprietary algorithms along with the commercially available mixed integer-programming package ILOG CPLEX. The development targets all phases of mine optimisation, including the NPV optimal block extraction sequence, pushback design, and simultaneous cut-off grade and mining schedule optimisation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call