Abstract
It is desirable to find unusual data objects by Ramaswamy et al.’s distance-based outlier definition, because only a metric distance function between two objects is required. This definition does not need any neighborhood distance threshold required by many existing algorithms based on the definition of Knorr and Ng. Bay and Schwabacher proposed an efficient algorithm ORCA, which can give near linear time performance, for this task. To further reduce the running time, we propose in this paper two algorithms RC and RS using the following two techniques, respectively: (i) faster cutoff update, and (ii) space utilization after pruning. We tested RC, RS, and RCS (a hybrid approach combining both RC and RS) on several large and high-dimensional real data sets with millions of objects. The experiments show that the speed of RCS is as fast as 1.4–2.3 times that of ORCA, and the improvement of RCS is relatively insensitive to the increase in the data size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.