Abstract

We introduce a methodology to analyze random molecular fragment populations and determine conditional probability relationships between fragments. Random fragment profiles are generated for an arbitrary set of molecules, and each observed fragment is assigned a frequency vector. An algorithm is designed to compare frequency vectors and derive dependencies of fragment occurrence. Using calculated dependency values, random fragment populations can be organized in graphs that capture their relationships and make it possible to map fragment pathways of biologically active molecules. For sets of molecules having similar activity, unique fragment signatures are identified. The analysis reveals that random fragment profiles contain compound class-specific information and provides evidence for the existence of activity-specific fragment hierarchies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.