Abstract
Molecular flexibility is a commonly used, but not easily quantified term. It is at the core of understanding composition and size of a conformational ensemble and contributes to many molecular properties. For many computational workflows, it is necessary to reduce a conformational ensemble to meaningful representatives, however defining them and guaranteeing the ensemble's completeness is difficult. We introduce the concepts of torsion angular bin strings (TABS) as a discrete vector representation of a conformer's dihedral angles and the number of possible TABS (nTABS) as an estimation for the ensemble size of a molecule, respectively. Here, we show that nTABS corresponds to an upper limit for the size of the conformational space of small molecules and compare the classification of conformer ensembles by TABS with classifications by RMSD. Overcoming known drawbacks like the molecular size dependency and threshold picking of the RMSD measure, TABS is shown to meaningfully discretize the conformational space and hence allows e.g. for fast checks of the coverage of the conformational space. The current proof-of-concept implementation is based on the ETKDGv3 conformer generator as implemented in the RDKit and known torsion preferences extracted from small-molecule crystallographic data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.