Abstract

The increasing amount of Web-based tasks is currently requiring personalization strategies to improve the user experience. However, building user profiles is a hard task, since users do not usually give explicit information about their interests. Therefore, interests must be mined implicitly from electronic sources, such as chat and discussion forums. In this work, we present a novel method for topic detection from online informal conversations. Our approach combines: (i) Wikipedia, an extensive source of knowledge, (ii) a concept association strategy, and (iii) a variety of text-mining techniques, such as POS tagging and named entities recognition. We performed a comparative evaluation procedure for searching the optimal combination of techniques, achieving encouraging results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.