Abstract
Hierarchical latent tree analysis (HLTA) is recently proposed as a new method for topic detection. It differs fundamentally from the LDA-based methods in terms of topic definition, topic-document relationship, and learning method. It has been shown to discover significantly more coherent topics and better topic hierarchies. However, HLTA relies on the Expectation-Maximization (EM) algorithm for parameter estimation and hence is not efficient enough to deal with large datasets. In this paper, we propose a method to drastically speed up HLTA using a technique inspired by the advances in the method of moments. Empirical experiments show that our method greatly improves the efficiency of HLTA. It is as efficient as the state-of-the-art LDA-based method for hierarchical topic detection and finds substantially better topics and topic hierarchies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.