Abstract

Discovering global knowledge from distributed data sources is challenging as there exist several practical concerns such as bandwidth limitation and data privacy. By appropriately abstracting distributed data, various global data mining tasks could still be implemented on the basis of local data abstractions. This article reviews existing techniques related to distributed data mining in abstraction‐based data mining. It then discusses open research challenges on mining tasks performed on distributed and abstracted data, describes how global data models (clustering and manifold discovery) could be learnt based on local data models, and points out future research directions. WIREs Data Mining Knowl Discov 2016, 6:167–176. doi: 10.1002/widm.1182This article is categorized under: Technologies > Computer Architectures for Data Mining Technologies > Structure Discovery and Clustering Technologies > Visualization

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.