Abstract

Earthquakes are a natural phenomenon which may cause significant loss of life and infrastructure. Researchers have applied multiple artificial intelligence based techniques to predict earthquakes, but high accuracies could not be achieved due to the huge size of multidimensional data, communication delays, transmission latency, limited processing capacity and data privacy issues. Federated learning (FL) is a machine learning (ML) technique that provides an opportunity to collect and process data onsite without compromising on data privacy and preventing data transmission to the central server. The federated concept of obtaining a global data model by aggregation of local data models inherently ensures data security, data privacy, and data heterogeneity. In this article, a novel earthquake prediction framework using FL has been proposed. The proposed FL framework has given better performance over already developed ML based earthquake predicting models in terms of efficiency, reliability, and precision. We have analyzed three different local datasets to generate multiple ML based local data models. These local data models have been aggregated to generate global data model on the central FL server using FedQuake algorithm. Meta classifier has been trained at the FL server on global data model to generate more accurate earthquake predictions. We have tested the proposed framework by analyzing multidimensional seismic data within 100 km radial area from 34.708° N, 72.5478° E in Western Himalayas. The results of the proposed framework have been validated against instrumentally recorded regional seismic data of last thirty-five years, and 88.87% prediction accuracy has been recorded. These results obtained by the proposed framework can serve as a useful component in the development of earthquake early warning systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.