Abstract
Recent studies have investigated the possible role of dynamic functional connectivity and the role of cross-frequency coupling (CFC) to provide the substrate for reliable biomarkers of brain disorders. In this study, we analyzed time-varying CFC profiles from resting state Magnetoencephal-ographic recordings of 30 mild Traumatic Brain Injury (mTBI) patients and 50 normal controls. Interactions among sensors at specific pairs of frequency bands were computed via estimation of phase-to-amplitude couplings. We then computed time-varying functional connectivity graphs that were described in terms of segregation (local efficiency, LE) and integration (global efficiency, GE) and mapped those graphs to time series of GE/LE estimates. The resulting dynamic network revealed transitions between a limited number of microstates for mTBI subjects compared to controls. The significant differences in transition probability between the two groups, along with the limited repertoire of possible states, can form the basis for a robust dynamic connectomic biomarker for the diagnosis of mTBI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.